# Options
ncol.wrap <- 7
x.wrap <- 0.85
y.wrap <- 0.09
height.wrap <- 10
width.wrap <- 14
Traits selected in this study:
Height:
In Portugal (Fundão): height in October 2012 when the trees were 20-month old.
In Asturias(Cabada, Spain): height in November 2012 when the trees were 21-month old.
In Bordeaux (Pierroton, France): height in November 2013 when the trees were 25-month old & in November 2018 when the trees were 85-month old.
Phenology:
mean bud burst (=date of brachybalst emergence) over four years (2013, 2014, 2015 and 2017) in Bordeaux (°C-day)
mean duration of bud burst (in 2014)2014, 2015 and 2017) in Bordeaux (°C-day)
Functional traits
\(\delta^{13}C\)
Specific Leaf Area (SLA)
In the document, the plots colored in green correspond to the trait selected in the study.
selected.drivers <- c("A","D",
"mean_MCMT","mean_MSP","var_MCMT","var_MSP",
"SH.20km.PC1","SH.20km.PC2","SH.1km.PC1","SH.1km.PC2")
# Load data
drivers <- readRDS(file="data/DF_Drivers.rds") %>%
dplyr::select(prov,all_of(selected.drivers))
data <- readRDS(file="data/ClonapinData/PhenoDataNovember2019_AnnualTraits.rds") %>%
dplyr::filter(!(prov=="MAD")) %>%
inner_join(drivers,by="prov")
data %>% dplyr::select(contains("ht")) %>% summary
## BDX_htnov13 BDX_htnov14 BDX_htnov15 BDX_htnov18 POR_htjan12 POR_htmay12 POR_htoct12 POR_htmay13 AST_htdec11 AST_htnov12 AST_htmar14
## Min. : 40.0 Min. : 50 Min. : 190 Min. : 530 Min. : 20.0 Min. : 20.0 Min. : 90.0 Min. : 150.0 Min. : 70.0 Min. : 90.0 Min. : 230
## 1st Qu.: 600.0 1st Qu.: 950 1st Qu.:1360 1st Qu.:3050 1st Qu.:155.0 1st Qu.:230.0 1st Qu.: 350.0 1st Qu.: 520.0 1st Qu.:230.0 1st Qu.: 580.0 1st Qu.:1020
## Median : 720.0 Median :1140 Median :1680 Median :3840 Median :210.0 Median :320.0 Median : 450.0 Median : 640.0 Median :280.0 Median : 700.0 Median :1250
## Mean : 737.8 Mean :1161 Mean :1712 Mean :3792 Mean :213.9 Mean :332.9 Mean : 463.1 Mean : 646.8 Mean :288.9 Mean : 710.7 Mean :1252
## 3rd Qu.: 860.0 3rd Qu.:1350 3rd Qu.:2040 3rd Qu.:4550 3rd Qu.:265.0 3rd Qu.:420.0 3rd Qu.: 560.0 3rd Qu.: 760.0 3rd Qu.:340.0 3rd Qu.: 840.0 3rd Qu.:1470
## Max. :1650.0 Max. :2550 Max. :3770 Max. :7660 Max. :580.0 Max. :870.0 Max. :1150.0 Max. :1450.0 Max. :700.0 Max. :1640.0 Max. :2670
## NA's :8448 NA's :8449 NA's :8468 NA's :8477 NA's :7542 NA's :7920 NA's :8940 NA's :9027 NA's :7725 NA's :7713 NA's :7718
plot_grid(
ggplot(data, aes(x= BDX_htnov13)) +
geom_histogram(binwidth = 20, fill="seagreen3") +
theme_bw() +
labs(x="Height 2013",y="") +
annotate("text",x=1500,y=150,label=paste0("Var = ",round(var(data$BDX_htnov13,na.rm=T),2))),
ggplot(data, aes(x= BDX_htnov14)) +
geom_histogram(binwidth = 20) +
theme_bw() +
labs(x="Height 2014",y="") +
annotate("text",x=2300,y=80,label=paste0("Var = ",round(var(data$BDX_htnov14,na.rm=T),2))),
ggplot(data, aes(x= BDX_htnov15)) +
geom_histogram(binwidth = 20) +
theme_bw() +
labs(x="Height 2015",y="") +
annotate("text",x=3000,y=60,label=paste0("Var = ",round(var(data$BDX_htnov15,na.rm=T),2))),
ggplot(data, aes(x= BDX_htnov18)) +
geom_histogram(binwidth = 20, fill="seagreen3") +
theme_bw() +
labs(x="Height 2018",y="") +
annotate("text",x=6500,y=50,label=paste0("Var = ",round(var(data$BDX_htnov18,na.rm=T),2))))
# Per provenance
# --------------
# Clones are colored according to the main gene pool (the gene pool for which the provenances have the highest proportion of belonging)
p <- ggplot(data, aes(x=BDX_htnov13, fill=as.factor(max.Q))) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov)) +
scale_fill_manual(values=c("orangered3", # Northern Africa
"gold2", # Corsica
"darkorchid3", # Central Spain
"navyblue", # French Atlantic
"turquoise2", # Iberian Atlantic
"green3" # South-eastern Spain
),
labels=c("Northern Africa",
"Corsica",
"Central Spain",
"French Atlantic",
"Iberian Atlantic",
"South-eastern Spain")
,name="Gene pools") +
labs(x="",y="") +
theme(legend.position = c(0.75, 0.07),
legend.text = element_text(size=12),
legend.title = element_text(size=14)) +
guides(fill=guide_legend(nrow=2))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightBordeaux2013.png",height=10,width=12)
# Per provenance
# --------------
# Provenances are colored according to the value of MCMT in their location
p <- ggplot(data, aes(x=BDX_htnov13, fill=mean_MCMT)) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov), ncol = ncol.wrap) +
labs(x="",y="") +
scale_fill_gradient2(midpoint = mean(data$mean_MCMT,na.rm=T),
low = "blue",
mid = "yellow",
high = "red",
space = "Lab" ,
name="Mean coldest month temperature") +
theme(legend.position = c(x.wrap,y.wrap),
legend.text = element_text(size=10),
legend.title = element_text(size=12))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightBordeaux2013_MCMTgradient.png",height=height.wrap,width=width.wrap)
# Per provenance
# --------------
# Clones are colored according to the main gene pool (the gene pool for which the provenances have the highest proportion of belonging)
p <- ggplot(data, aes(x=BDX_htnov18, fill=as.factor(max.Q))) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov)) +
scale_fill_manual(values=c("orangered3", # Nprthern Africa
"gold2",# Corsica
"darkorchid3", # Central Spain
"navyblue", # french Atlantic
"turquoise2", # Iberian Atlantic
"green3" # South-eastern Spain
),
labels=c("Northern Africa",
"Corsica",
"Central Spain",
"French Atlantic",
"Iberian Atlantic",
"South-eastern Spain")
,name="Gene pools") +
labs(x="",y="") +
theme(legend.position = c(0.75, 0.07),
legend.text = element_text(size=12),
legend.title = element_text(size=14)) +
guides(fill=guide_legend(nrow=2))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightBordeaux2018.png",height=10,width=12)
# Per provenance
# --------------
# Provenances are colored according to the value of MCMT in their location
p <- ggplot(data, aes(x=BDX_htnov18, fill=mean_MCMT)) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov), ncol = ncol.wrap) +
labs(x="",y="") +
scale_fill_gradient2(midpoint = mean(data$mean_MCMT,na.rm=T),
low = "blue",
mid = "yellow",
high = "red",
space = "Lab" ,
name="Mean coldest month temperature") +
theme(legend.position = c(x.wrap,y.wrap),
legend.text = element_text(size=10),
legend.title = element_text(size=12))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightBordeaux2018_MCMTgradient.png",height=height.wrap,width=width.wrap)
plot_grid(
ggplot(data, aes(x= AST_htdec11)) +
geom_histogram(binwidth = 20) +
theme_bw() +
labs(x="Height - December 2011",y="") +
annotate("text",x=580,y=300,label=paste0("Var = ",round(var(data$BDX_htnov13,na.rm=T),2))),
ggplot(data, aes(x= AST_htnov12)) +
geom_histogram(binwidth = 20, fill="seagreen3") +
theme_bw() +
labs(x="Height - November 2012",y="") +
annotate("text",x=1200,y=150,label=paste0("Var = ",round(var(data$BDX_htnov14,na.rm=T),2))),
ggplot(data, aes(x= AST_htmar14)) +
geom_histogram(binwidth = 20) +
theme_bw() +
labs(x="Height - March 2014",y="") +
annotate("text",x=2100,y=100,label=paste0("Var = ",round(var(data$BDX_htnov15,na.rm=T),2))))
# Per provenance
# --------------
# Clones are colored according to the main gene pool (the gene pool for which the provenances have the highest proportion of belonging)
p <- ggplot(data, aes(x=AST_htnov12, fill=as.factor(max.Q))) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov)) +
scale_fill_manual(values=c("orangered3", # Northern Africa
"gold2", # Corsica
"darkorchid3", # Central Spain
"navyblue", # French Atlantic
"turquoise2", # Iberian Atlantic
"green3" # South-eastern Spain
),
labels=c("Northern Africa",
"Corsica",
"Central Spain",
"French Atlantic",
"Iberian Atlantic",
"South-eastern Spain")
,name="Gene pools") +
labs(x="",y="") +
theme(legend.position = c(0.75, 0.07),
legend.text = element_text(size=12),
legend.title = element_text(size=14)) +
guides(fill=guide_legend(nrow=2))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightAsturias2012.png",height=10,width=12)
# Per provenance
# --------------
# Provenances are colored according to the value of MCMT in their location
p <- ggplot(data, aes(x=AST_htnov12, fill=mean_MCMT)) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov), ncol = ncol.wrap) +
labs(x="",y="") +
scale_fill_gradient2(midpoint = mean(data$mean_MCMT,na.rm=T),
low = "blue",
mid = "yellow",
high = "red",
space = "Lab" ,
name="Mean coldest month temperature") +
theme(legend.position = c(x.wrap,y.wrap),
legend.text = element_text(size=10),
legend.title = element_text(size=12))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightAsturias2012_MCMTgradient.png",height=height.wrap,width=width.wrap)
plot_grid(
ggplot(data, aes(x= POR_htjan12)) +
geom_histogram(binwidth = 20) +
theme_bw() +
labs(x="Height - January 2012",y="") +
annotate("text",x=400,y=300,label=paste0("Var = ",round(var(data$POR_htjan12,na.rm=T),2))),
ggplot(data, aes(x= POR_htmay12)) +
geom_histogram(binwidth = 20) +
theme_bw() +
labs(x="Height - May 2012",y="") +
annotate("text",x=600,y=150,label=paste0("Var = ",round(var(data$POR_htmay12,na.rm=T),2))),
ggplot(data, aes(x= POR_htoct12)) +
geom_histogram(binwidth = 20,fill="seagreen3") +
theme_bw() +
labs(x="Height - October 2012",y="") +
annotate("text",x=900,y=100,label=paste0("Var = ",round(var(data$POR_htoct12,na.rm=T),2))),
ggplot(data, aes(x= POR_htmay13)) +
geom_histogram(binwidth = 20) +
theme_bw() +
labs(x="Height - May 2013",y="") +
annotate("text",x=1200,y=100,label=paste0("Var = ",round(var(data$POR_htmay13,na.rm=T),2))))
# Per provenance
# --------------
# Clones are colored according to the main gene pool (the gene pool for which the provenances have the highest proportion of belonging)
p <- ggplot(data, aes(x=POR_htoct12, fill=as.factor(max.Q))) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov)) +
scale_fill_manual(values=c("orangered3", # Northern Africa
"gold2", # Corsica
"darkorchid3", # Central Spain
"navyblue", # French Atlantic
"turquoise2", # Iberian Atlantic
"green3" # South-eastern Spain
),
labels=c("Northern Africa",
"Corsica",
"Central Spain",
"French Atlantic",
"Iberian Atlantic",
"South-eastern Spain")
,name="Gene pools") +
labs(x="",y="") +
theme(legend.position = c(0.75, 0.07),
legend.text = element_text(size=12),
legend.title = element_text(size=14)) +
guides(fill=guide_legend(nrow=2))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightPortugal2012.png",height=10,width=12)
# Per provenance
# --------------
# Provenances are colored according to the value of MCMT in their location
p <- ggplot(data, aes(x=POR_htoct12, fill=mean_MCMT)) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov), ncol = ncol.wrap) +
labs(x="",y="") +
scale_fill_gradient2(midpoint = mean(data$mean_MCMT,na.rm=T),
low = "blue",
mid = "yellow",
high = "red",
space = "Lab" ,
name="Mean coldest month temperature") +
theme(legend.position = c(x.wrap,y.wrap),
legend.text = element_text(size=10),
legend.title = element_text(size=12))
p
ggsave(p,file="figs/ExploratoryAnalyses/HeightPortugal2012_MCMTgradient.png",height=height.wrap,width=width.wrap)
# Per block
# --------------
data %>%
drop_na(POR_htoct12) %>%
droplevels() %>%
ggplot(aes(x=POR_htoct12, fill=as.factor(block))) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(block)) +
labs(x="",y="") +
theme(legend.position = "none")
data %>% dplyr::select(contains("d13C")) %>% summary
## d13C
## Min. :-30.47
## 1st Qu.:-27.14
## Median :-26.18
## Mean :-26.26
## 3rd Qu.:-25.39
## Max. :-22.59
## NA's :9747
ggplot(data, aes(x= d13C)) +
geom_histogram(binwidth = 0.1,fill="seagreen3") +
theme_bw() +
labs(x="Delta 13 C",y="") +
annotate("text",x=-30,y=60,label=paste0("Var = ",round(var(data$d13C,na.rm=T),2)))
# Per provenance
# --------------
# Clones are colored according to the main gene pool (the gene pool for which the provenances have the highest proportion of belonging)
p <- ggplot(data, aes(x=d13C, fill=as.factor(max.Q))) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov)) +
scale_fill_manual(values=c("orangered3", # Northern Africa
"gold2", # Corsica
"darkorchid3", # Central Spain
"navyblue", # French Atlantic
"turquoise2", # Iberian Atlantic
"green3" # South-eastern Spain
),
labels=c("Northern Africa",
"Corsica",
"Central Spain",
"French Atlantic",
"Iberian Atlantic",
"South-eastern Spain")
,name="Gene pools") +
labs(x="",y="") +
theme(legend.position = c(0.75, 0.07),
legend.text = element_text(size=12),
legend.title = element_text(size=14)) +
guides(fill=guide_legend(nrow=2))
p
ggsave(p,file="figs/ExploratoryAnalyses/d13C.png",height=10,width=12)
# Per provenance
# --------------
# Provenances are colored according to the value of MCMT in their location
p <- ggplot(data, aes(x=d13C, fill=mean_MCMT)) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov), ncol = ncol.wrap) +
labs(x="",y="") +
scale_fill_gradient2(midpoint = mean(data$mean_MCMT,na.rm=T),
low = "blue",
mid = "yellow",
high = "red",
space = "Lab" ,
name="Mean coldest month temperature") +
theme(legend.position = c(x.wrap,y.wrap),
legend.text = element_text(size=10),
legend.title = element_text(size=12))
p
ggsave(p,file="figs/ExploratoryAnalyses/d13C_MCMTgradient.png",height=height.wrap,width=width.wrap)
data %>% dplyr::select(contains("SLA")) %>% summary
## POR_SLA
## Min. :2.253
## 1st Qu.:4.620
## Median :5.157
## Mean :5.258
## 3rd Qu.:5.790
## Max. :9.534
## NA's :9044
plot_grid(ggplot(data, aes(x= POR_SLA)) +
geom_histogram(binwidth = 0.1,fill="seagreen3") +
theme_bw() +
labs(x="Specific Leaf Area",y="") +
annotate("text",x=9,y=130,label=paste0("Var = ",round(var(data$POR_SLA,na.rm=T),2))),
ggplot(data, aes(x= log(POR_SLA))) +
geom_histogram(binwidth = 0.01,fill="seagreen3") +
theme_bw() +
labs(x="Specific Leaf Area",y="") +
annotate("text",x=2.05,y=50,label=paste0("Var = ",round(var(log(data$POR_SLA),na.rm=T),2))),
nrow=1)
# Per provenance
# --------------
# Clones are colored according to the main gene pool (the gene pool for which the provenances have the highest proportion of belonging)
p <- ggplot(data, aes(x=POR_SLA, fill=as.factor(max.Q))) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov)) +
scale_fill_manual(values=c("orangered3", # Northern Africa
"gold2", # Corsica
"darkorchid3", # Central Spain
"navyblue", # French Atlantic
"turquoise2", # Iberian Atlantic
"green3" # South-eastern Spain
),
labels=c("Northern Africa",
"Corsica",
"Central Spain",
"French Atlantic",
"Iberian Atlantic",
"South-eastern Spain")
,name="Gene pools") +
labs(x="",y="") +
theme(legend.position = c(0.75, 0.07),
legend.text = element_text(size=12),
legend.title = element_text(size=14)) +
guides(fill=guide_legend(nrow=2))
p
ggsave(p,file="figs/ExploratoryAnalyses/PORSLA.png",height=10,width=12)
# Per provenance
# --------------
# Provenances are colored according to the value of MCMT in their location
p <- ggplot(data, aes(x=POR_SLA, fill=mean_MCMT)) +
geom_histogram(alpha=0.7) +
theme_bw() +
facet_wrap(~as.factor(prov), ncol = ncol.wrap) +
labs(x="",y="") +
scale_fill_gradient2(midpoint = mean(data$mean_MCMT,na.rm=T),
low = "blue",
mid = "yellow",
high = "red",
space = "Lab" ,
name="Mean coldest month temperature") +
theme(legend.position = c(x.wrap,y.wrap),
legend.text = element_text(size=10),
legend.title = element_text(size=12))
p
ggsave(p,file="figs/ExploratoryAnalyses/PORSLA_MCMTgradient.png",height=height.wrap,width=width.wrap)
fontsize=8
ymean = 0.82
yvar = 0.92
p <- plot_grid(
# Height Portugal (Fundão) 2012
ggplot(data, aes(x= POR_htoct12)) +
geom_histogram(binwidth = 20,fill="#B2182B",alpha=0.7) +
theme_bw() +
labs(x="Height (Portugal, 20 months, mm)",y="") +
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(data$POR_htoct12,na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(data$POR_htoct12,na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
# Height Bordeaux 2013
ggplot(data, aes(x= BDX_htnov13)) +
geom_histogram(binwidth = 20, fill="#D73027",alpha=0.7) +
theme_bw() +
labs(x="Height (Bordeaux, 25 months, mm)",y="") +
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(data$BDX_htnov13,na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(data$BDX_htnov13,na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
# Height Bordeaux 2018
ggplot(data, aes(x= BDX_htnov18)) +
geom_histogram(binwidth = 20, fill="#F46D43",alpha=0.7) +
theme_bw() +
labs(x="Height (Bordeaux, 85 months, mm)",y="") +
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(data$BDX_htnov18,na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(data$BDX_htnov18,na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
# Height Cabada (Asturias) 2012
ggplot(data, aes(x= AST_htnov12)) +
geom_histogram(binwidth = 20, fill="#FDAE61",alpha=0.7) +
theme_bw() +
labs(x="Height (Asturias, 21 months, mm)",y="") +
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(data$AST_htnov12,na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(data$AST_htnov12,na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
# Mean bud burst date Bordeaux
ggplot(meanBB,aes(x= mean)) +
geom_histogram(binwidth = 10,fill="#5AAE61",alpha=0.7) +
theme_bw() +
labs(x="Mean bud burst date (Bordeaux, over four years, °C-day)",y="") +
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(meanBB$mean,na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(meanBB$mean,na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
# Mean duration bud burst Bordeaux
ggplot(meanDBB,aes(x= mean)) +
geom_histogram(binwidth = 10,fill="#A6DBA0",alpha=0.7) +
theme_bw() +
labs(x="Mean duration of bud burst (Bordeaux, over three years, °C-day)",y="") +
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(meanDBB$mean,na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(meanDBB$mean,na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
# SLA Portugal
ggplot(data, aes(x= log(POR_SLA))) +
geom_histogram(binwidth = 0.01,fill="#4575B4",alpha=0.7) +
theme_bw() +
labs(x=TeX("Log(Specific Leaf Area) (Portugal, m$^{2}$/kg)"),y="") +
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(log(data$POR_SLA),na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(log(data$POR_SLA),na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
# delta13C Portugal
ggplot(data, aes(x= d13C)) +
geom_histogram(binwidth = 0.1,fill="#ABD9E9",alpha=0.7) +
theme_bw() +
labs(x=TeX("$\\delta^{13}C$ (Portugal, ‰)"),y="")+
annotation_custom(grobTree(textGrob(paste0("Variance : ",
round(var(data$d13C,na.rm=T),2)),
x=0.7,
y=yvar,
hjust=0,
gp=gpar(fontsize=fontsize)))) +
annotation_custom(grobTree(textGrob(paste0("Mean : ",
round(mean(data$d13C,na.rm=T),2)),
x=0.7,
y=ymean,
hjust=0,
gp=gpar(fontsize=fontsize)))),
nrow=4)
p
ggsave(p,file=paste0("figs/ExploratoryAnalyses/TraitsDistribution.png"),width = 10,height=8)
# the numbers in the columns "Trees", "Populations" and "Clones" were checked with the model inputs (May 12th)
tibble(Traits=c(rep("Height",4),"Mean bud burst date", "Mean duration of bud burst","Surface Leaf Area","$\\delta^{13}$C"),
"Common gardens"=c("Portugal",rep("Bordeaux",2),"Cabada",rep("Bordeaux",2),rep("Portugal",2)),
"Dates of measurement" =c("October 2012","November 2013", "November 2018","November 2012", "2013, 2014, 2015, 2017", "2014, 2015 2017", NA,NA),
"Tree age"=c(20,25,85,21,"-","-",NA,NA),
"Survival"=c(
# Proportion survival Portugal
round(table(data$POR_survoct12)[[2]]/(table(data$POR_survoct12)[[1]]+table(data$POR_survoct12)[[2]]),2),
# Proportion survival Bordeaux 2013
round(table(data$BDX_surv13)[[2]]/(table(data$BDX_surv13)[[1]]+table(data$BDX_surv13)[[2]]),2),
# Proportion survival Bordeaux 2018
round(table(data$BDX_surv18)[[2]]/(table(data$BDX_surv18)[[1]]+table(data$BDX_surv18)[[2]]),2),
# Proportion survival Asturias
round(table(data$AST_survnov12)[[2]]/(table(data$AST_survnov12)[[1]]+table(data$AST_survnov12)[[2]]),2),
"-","-","-","-"),
"Units"=c(rep("mm",4),"°C-day","°C-day","m$^{2}$/kg","‰"),
"Trees"=c(length(data$tree[!is.na(data$POR_htoct12)]), # height Portugal 2012
length(data$tree[!is.na(data$BDX_htnov13)]), # height Bordeaux 2013
length(data$tree[!is.na(data$BDX_htnov18)]), # height Bordeaux 2018
length(data$tree[!is.na(data$AST_htnov12)]), # height Cabada (Asturias) 2012
length(meanBB$tree[!is.na(meanBB$mean)]), # mean bud burst date Bordeaux
length(meanDBB$tree[!is.na(meanDBB$mean)]), # mean duration bud burst Bordeaux
length(data$tree[!is.na(data$POR_SLA)]), # SLA Portugal
length(data$tree[!is.na(data$d13C)])), # delta 13 C Portugal
"Populations" = c(length(unique(data$prov[!is.na(data$POR_htoct12)])), # height Portugal 2012
length(unique(data$prov[!is.na(data$BDX_htnov13)])), # height Bordeaux 2013
length(unique(data$prov[!is.na(data$BDX_htnov18)])), # height Bordeaux 2018
length(unique(data$prov[!is.na(data$AST_htnov12)])), # height Asturias 2012
length(unique(meanBB$prov[!is.na(meanBB$mean)])), # mean bud burst date Bordeaux
length(unique(meanDBB$prov[!is.na(meanDBB$mean)])), # mean duration bud burst Bordeaux
length(unique(data$prov[!is.na(data$POR_SLA)])), # SLA Portugal
length(unique(data$prov[!is.na(data$d13C)]))), # delta 13 C Portugal
"Clones" = c(length(unique(data$clon[!is.na(data$POR_htoct12)])), # height Portugal 2012
length(unique(data$clon[!is.na(data$BDX_htnov13)])), # height Bordeaux 2013
length(unique(data$clon[!is.na(data$BDX_htnov18)])), # height Bordeaux 2018
length(unique(data$clon[!is.na(data$AST_htnov12)])), # height Asturias 2012
length(unique(meanBB$clon[!is.na(meanBB$mean)])), # mean bud burst date Bordeaux
length(unique(meanDBB$clon[!is.na(meanDBB$mean)])), # mean duration bud burst Bordeaux
length(unique(data$clon[!is.na(data$POR_SLA)])), # SLA Portugal
length(unique(data$clon[!is.na(data$d13C)]))), # delta 13 C Portugal
"Blocks" = c(length(unique(data$block[!is.na(data$POR_htoct12)])), # height Portugal 2012
length(unique(data$block[!is.na(data$BDX_htnov13)])), # height Bordeaux 2013
length(unique(data$block[!is.na(data$BDX_htnov18)])), # height Bordeaux 2018
length(unique(data$block[!is.na(data$AST_htnov12)])), # height Asturias 2012
length(unique(meanBB$block[!is.na(meanBB$mean)])), # mean bud burst date Bordeaux
length(unique(meanDBB$block[!is.na(meanDBB$mean)])), # mean duration bud burst Bordeaux
length(unique(data$block[!is.na(data$POR_SLA)])), # SLA Portugal
length(unique(data$block[!is.na(data$d13C)]))) # delta 13 C Portugal
) %>%
kable(caption="Table S1 of the paper",escape = FALSE) %>%
kable_styling(font_size=11,
bootstrap_options = c("striped","hover", "condensed"), full_width = F)
Traits | Common gardens | Dates of measurement | Tree age | Survival | Units | Trees | Populations | Clones | Blocks |
---|---|---|---|---|---|---|---|---|---|
Height | Portugal | October 2012 | 20 | 0.66 | mm | 2746 | 33 | 521 | 8 |
Height | Bordeaux | November 2013 | 25 | 0.97 | mm | 3238 | 33 | 430 | 8 |
Height | Bordeaux | November 2018 | 85 | 0.96 | mm | 3209 | 33 | 430 | 8 |
Height | Cabada | November 2012 | 21 | 0.96 | mm | 3973 | 33 | 522 | 8 |
Mean bud burst date | Bordeaux | 2013, 2014, 2015, 2017 |
|
|
°C-day | 3175 | 33 | 430 | 8 |
Mean duration of bud burst | Bordeaux | 2014, 2015 2017 |
|
|
°C-day | 3187 | 33 | 430 | 8 |
Surface Leaf Area | Portugal | NA | NA |
|
m\(^{2}\)/kg | 2642 | 33 | 520 | 8 |
\(\delta^{13}\)C | Portugal | NA | NA |
|
‰ | 1939 | 33 | 517 | 8 |